

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	librarian 0.3.0 documentation

librarian

[image: https://badge.fury.io/py/librarian.png]
 [http://badge.fury.io/py/librarian][image: https://travis-ci.org/Nekroze/librarian.png?branch=master]
 [https://travis-ci.org/Nekroze/librarian][image: https://pypip.in/d/librarian/badge.png]
 [https://crate.io/packages/librarian?version=latest]Python advanced card game library.

Features

	Sqlite based card storage database

	Easy de/re-serialization of card objects

	Complex filtering methods for card databases

Contents:

	Installation

	librarian
	librarian Package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.3.0 (09/02/2013)

Feedback

If you have any suggestions or questions about librarian feel free to email me
at nekroze@eturnilnetwork.com.

If you encounter any errors or problems with librarian, please let me know!
Open an Issue at the GitHub http://github.com/Nekroze/librarian main repository.

 Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	librarian 0.3.0 documentation

Installation

At the command line either via easy_install or pip:

$ easy_install librarian
$ pip install librarian

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv librarian
$ pip install librarian

 Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	librarian 0.3.0 documentation

librarian

	librarian Package
	librarian Package

	card Module

	deck Module

	library Module

 Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	librarian 0.3.0 documentation

 	librarian

librarian Package

librarian Package

card Module

Generic Card Class.

	
class librarian.card.Card(code=None, name=None, loaddict=None)[source]

	Bases: object

	The card stores general information about the card.

	
	code: the unique identifier for this card.

	name: name of this card to be displayed.

	abilities: dict of phase ids containing a list of action descriptors.

	attributes: list of special details this card has.

	info: dict of any information you would like.

Card can be saved to, and loaded from, a string. Call str() on a Card
instance or .save_string() on the instance. This will return a string
that when evaluated using eval() can be unpacked into the Card
constructor re-create that card. For example.
original = Card(1, 'cool card')
savestring = str(card)
loaded = Card(*eval(savestring))
assert loaded == original

	
add_ability(phase, ability)[source]

	Add the given ability to this Card under the given phase. Returns
the length of the abilities for the given phase after the addition.

	
add_attribute(attribute)[source]

	Add the given attribute to this Card. Returns the length of
attributes after addition.

	
get_abilities(phase)[source]

	Returns an ability list for the given phase ID.

	
get_info(key)[source]

	Return a value in the info for this card with the given key.

	
has_attribute(attribute)[source]

	Return true if this card contains the given attribute.

	
is_valid()[source]

	Returns True if code is not 0 and self.name is not ‘’.

	
load(carddict)[source]

	Takes a carddict as produced by Card.save and sets this card
instances information to the previously saved cards information.

	
save()[source]

	Converts the Card as is into a dictionary capable of reconstructing the
card with Card.load or serialized to a string for storage.

	
set_info(key, value, append=True)[source]

	Set any special info you wish to the given key. Each info is stored in
a list and will be appended to rather then overriden unless append is
False.

deck Module

Generic Card Class.

	
class librarian.deck.Deck(library=None, cards=None)[source]

	Bases: object

A collection of possibly recuring cards stored as codes.

	
contains_card(code)[source]

	Returns true if the given code is currently stored in this deck.

	
contains_info(key, value)[source]

	Returns how many cards in the deck have the specified value under the
specified key in their info data.

This method requires a library to be stored in the deck instance and
will return None if there is no library.

	
contians_attribute(attribute)[source]

	Returns how many cards in the deck have the specified attribute.

This method requires a library to be stored in the deck instance and
will return None if there is no library.

	
get_card(index=-1, cache=True, remove=True)[source]

	Retrieve a card any number of cards from the top. Returns a
Card object loaded from a library if one is specified otherwise
just it will simply return its code.

If index is not set then the top card will be retrieved.

If cache is set to True (the default) it will tell the library to cache
the returned card for faster look-ups in the future.

If remove is true then the card will be removed from the deck before
returning it.

	
move_top_cards(other, number=1)[source]

	Move the top number of cards to the top of some other deck.

By default only one card will be moved if number is not specified.

	
remaining()[source]

	Returns the number of remaining cards in the deck.

	
shuffle()[source]

	Sort the cards in the deck into a random order..

	
top_cards(number=1, cache=True, remove=True)[source]

	Retrieve the top number of cards as Librarian.Card objects in a
list in order of top to bottom most card. Uses the decks
.get_card and passes along the cache and remove arguments.

library Module

The Library class, an sqlite database of cards.

	
class librarian.library.Library(dbname, cachelimit=100, cardclass=<class 'librarian.card.Card'>)[source]

	Bases: object

Library wraps an sqlite3 database that stores serialized cards.

Library also allows load and save hooks that allow a list of function to be
called on each string as it is saved and loaded.

The Library constructor can take a cardclass argument which
defaults to librarian.card.Card and is used to construct a card object
when loading. A cardclass should be a subclass of
librarian.card.Card and be able to take the original carddict
constructor argument alone along with providing the original or equal
Card.load and Card.save methods.

	
cache_card(card)[source]

	Cache the card for faster future lookups. Removes the oldest card
when the card cache stores more cards then this libraries cache limit.

	
cached(code)[source]

	Return True if there is a card for the given code in the cache.

	
connection()[source]

	Connect to the underlying database and return the connection.

	
create_db()[source]

	Create the CARDS table in the sqlite3 database.

	
filter_search(code=None, name=None, abilities=None, attributes=None, info=None)[source]

	Return a list of codes and names pertaining to cards that have the
given information values stored.

Can take a code integer, name string, abilities dict {phase: ability
list/”*”}, attributes list, info dict {key, value list/”*”}.

In the above argument examples “*” is a string that may be passed
instead of a list as the dict value to match anything that stores that
key.

	
load_card(code, cache=True)[source]

	Load a card with the given code from the database. This calls each
save event hook on the save string before commiting it to the database.

Will cache each resulting card for faster future lookups with this
method while respecting the libraries cache limit. However only if the
cache argument is True.

Will return None if the card could not be loaded.

	
retrieve_all()[source]

	A generator that iterates over each card in the library database.

This is best used in for loops as it will only load a card from the
library as needed rather then all at once.

	
save_card(card, cache=False)[source]

	Save the given card to the database. This calls each save event hook
on the save string before commiting it to the database.

	
librarian.library.Where_filter_gen(*data)[source]

	Generate an sqlite “LIKE” filter generator based on the given data.
This functions arguments should be a N length series of field and data
tuples.

 Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	librarian 0.3.0 documentation

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/Nekroze/librarian/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

librarian could always use more documentation, whether as part of the
official librarian docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/Nekroze/librarian/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up librarian for
local development.

	Fork [https://github.com/Nekroze/librarian/fork] the librarian repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/librarian.git

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass style and unit
tests, including testing other Python versions with tox:

$ tox

To get tox, just pip install it.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy.
Check https://travis-ci.org/Nekroze/librarian
under pull requests for active pull requests or run the tox command and
make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test test/test_librarian.py

 Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	librarian 0.3.0 documentation

Credits

Development Lead

	Taylor “Nekroze” Lawson <nekroze@eturnilnetwork.com>

Contributors

None yet. Why not be the first?

 Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	librarian 0.3.0 documentation

History

0.3.0 (09/02/2013)

	First re-release on PyPI.

 Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	librarian 0.3.0 documentation

 Python Module Index

 l

 			

 		
 l	

 	[image: -]
 	
 librarian	

 	
 	
 librarian.__init__	

 	
 	
 librarian.card	

 	
 	
 librarian.deck	

 	
 	
 librarian.library	

 Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	librarian 0.3.0 documentation

Index

 A
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | R
 | S
 | T
 | W

A

 	

 	add_ability() (librarian.card.Card method)

 	

 	add_attribute() (librarian.card.Card method)

C

 	

 	cache_card() (librarian.library.Library method)

 	cached() (librarian.library.Library method)

 	Card (class in librarian.card)

 	connection() (librarian.library.Library method)

 	

 	contains_card() (librarian.deck.Deck method)

 	contains_info() (librarian.deck.Deck method)

 	contians_attribute() (librarian.deck.Deck method)

 	create_db() (librarian.library.Library method)

D

 	

 	Deck (class in librarian.deck)

F

 	

 	filter_search() (librarian.library.Library method)

G

 	

 	get_abilities() (librarian.card.Card method)

 	get_card() (librarian.deck.Deck method)

 	

 	get_info() (librarian.card.Card method)

H

 	

 	has_attribute() (librarian.card.Card method)

I

 	

 	is_valid() (librarian.card.Card method)

L

 	

 	librarian.__init__ (module)

 	librarian.card (module)

 	librarian.deck (module)

 	librarian.library (module)

 	

 	Library (class in librarian.library)

 	load() (librarian.card.Card method)

 	load_card() (librarian.library.Library method)

M

 	

 	move_top_cards() (librarian.deck.Deck method)

R

 	

 	remaining() (librarian.deck.Deck method)

 	

 	retrieve_all() (librarian.library.Library method)

S

 	

 	save() (librarian.card.Card method)

 	save_card() (librarian.library.Library method)

 	

 	set_info() (librarian.card.Card method)

 	shuffle() (librarian.deck.Deck method)

T

 	

 	top_cards() (librarian.deck.Deck method)

W

 	

 	Where_filter_gen() (in module librarian.library)

 Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 _modules/librarian/deck.html

 Navigation

 		
 index

 		
 modules |

 		librarian 0.3.0 documentation »

 		Module code »

 Source code for librarian.deck

"""Generic Card Class."""
__author__ = 'Taylor "Nekroze" Lawson'
__email__ = 'nekroze@eturnilnetwork.com'
import random
from functools import partial

[docs]class Deck(object):
 """A collection of possibly recuring cards stored as codes."""
 def __init__(self, library=None, cards=None):
 self.library = library
 self.cards = cards if cards is not None else []

[docs] def remaining(self):
 """Returns the number of remaining cards in the deck."""
 return len(self.cards)

[docs] def shuffle(self):
 """Sort the cards in the deck into a random order.."""
 self.cards = random.shuffle(self.cards)

[docs] def get_card(self, index=-1, cache=True, remove=True):
 """
 Retrieve a card any number of cards from the top. Returns a
 ``Card`` object loaded from a library if one is specified otherwise
 just it will simply return its code.

 If `index` is not set then the top card will be retrieved.

 If cache is set to True (the default) it will tell the library to cache
 the returned card for faster look-ups in the future.

 If remove is true then the card will be removed from the deck before
 returning it.
 """
 if len(self.cards) < index:
 return None

 retriever = self.cards.pop if remove else self.cards.__getitem__
 code = retriever(index)

 if self.library:
 return self.library.load_card(code, cache)
 else:
 return code

[docs] def top_cards(self, number=1, cache=True, remove=True):
 """
 Retrieve the top number of cards as ``Librarian.Card`` objects in a
 list in order of top to bottom most card. Uses the decks
 ``.get_card`` and passes along the cache and remove arguments.
 """
 getter = partial(self.get_card(cache=cache, remove=remove))
 return [getter(index=i) for i in range(number)]

[docs] def move_top_cards(self, other, number=1):
 """
 Move the top `number` of cards to the top of some `other` deck.

 By default only one card will be moved if `number` is not specified.
 """
 other.cards.append(reversed(self.cards[-number:]))

[docs] def contains_card(self, code):
 """Returns true if the given code is currently stored in this deck."""
 return code in self.cards

[docs] def contians_attribute(self, attribute):
 """
 Returns how many cards in the deck have the specified attribute.

 This method requires a library to be stored in the deck instance and
 will return `None` if there is no library.
 """
 if self.library is None:
 return 0

 load = self.library.load_card
 matches = 0
 for code in self.cards:
 card = load(code)
 if card.has_attribute(attribute):
 matches += 1
 return matches

[docs] def contains_info(self, key, value):
 """
 Returns how many cards in the deck have the specified value under the
 specified key in their info data.

 This method requires a library to be stored in the deck instance and
 will return `None` if there is no library.
 """
 if self.library is None:
 return 0

 load = self.library.load_card
 matches = 0
 for code in self.cards:
 card = load(code)
 if card.get_info(key) == value:
 matches += 1
 return matches

 © Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

_static/minus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		librarian 0.3.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_modules/librarian/card.html

 Navigation

 		
 index

 		
 modules |

 		librarian 0.3.0 documentation »

 		Module code »

 Source code for librarian.card

"""Generic Card Class."""
__author__ = 'Taylor "Nekroze" Lawson'
__email__ = 'nekroze@eturnilnetwork.com'
from six import text_type

[docs]class Card(object):
 """
 The card stores general information about the card.
 * code: the unique identifier for this card.
 * name: name of this card to be displayed.
 * abilities: dict of phase ids containing a list of action descriptors.
 * attributes: list of special details this card has.
 * info: dict of any information you would like.

 Card can be saved to, and loaded from, a string. Call ``str()`` on a Card
 instance or ``.save_string()`` on the instance. This will return a string
 that when evaluated using ``eval()`` can be unpacked into the Card
 constructor re-create that card. For example.
 ``original = Card(1, 'cool card')``
 ``savestring = str(card)``
 ``loaded = Card(*eval(savestring))``
 ``assert loaded == original``
 """
 def __init__(self, code=None, name=None, loaddict=None):
 self.code = 0 if code is None else code
 self.name = '' if name is None else name
 self.abilities = {}
 self.attributes = []
 self.info = {}
 if loaddict is not None:
 self.load(loaddict)

[docs] def is_valid(self):
 """Returns True if code is not 0 and self.name is not ''."""
 return self.code != 0 and self.name != ''

[docs] def has_attribute(self, attribute):
 """Return true if this card contains the given attribute."""
 return attribute in self.attributes

[docs] def add_attribute(self, attribute):
 """
 Add the given attribute to this Card. Returns the length of
 attributes after addition.
 """
 self.attributes.append(attribute)
 return len(self.attributes)

[docs] def get_abilities(self, phase):
 """Returns an ability list for the given phase ID."""
 return self.abilities[phase] if phase in self.abilities else None

[docs] def add_ability(self, phase, ability):
 """Add the given ability to this Card under the given phase. Returns
 the length of the abilities for the given phase after the addition.
 """
 if phase not in self.abilities:
 self.abilities[phase] = []
 self.abilities[phase].append(ability)
 return len(self.abilities[phase])

[docs] def get_info(self, key):
 """Return a value in the info for this card with the given key."""
 return self.info[key] if key in self.info else None

[docs] def set_info(self, key, value, append=True):
 """
 Set any special info you wish to the given key. Each info is stored in
 a list and will be appended to rather then overriden unless append is
 False.
 """
 if append:
 if key not in self.info:
 self.info[key] = []
 self.info[key].append(value)
 else:
 self.info[key] = value

[docs] def save(self):
 """
 Converts the Card as is into a dictionary capable of reconstructing the
 card with ``Card.load`` or serialized to a string for storage.
 """
 return dict(code=self.code, name=self.name, abilities=self.abilities,
 attributes=self.attributes, info=self.info)

[docs] def load(self, carddict):
 """
 Takes a carddict as produced by ``Card.save`` and sets this card
 instances information to the previously saved cards information.
 """
 self.code = carddict["code"]
 if isinstance(self.code, text_type):
 self.code = eval(self.code)
 self.name = carddict["name"]
 self.abilities = carddict["abilities"]
 if isinstance(self.abilities, text_type):
 self.abilities = eval(self.abilities)
 self.attributes = carddict["attributes"]
 if isinstance(self.attributes, text_type):
 self.attributes = eval(self.attributes)
 self.info = carddict["info"]
 if isinstance(self.info, text_type):
 self.info = eval(self.info)
 return self

 def __eq__(self, other):
 """Return True if this card's code is the same as the other's code."""
 return isinstance(other, Card) and self.code == other.code

 def __neq__(self, other):
 """
 Return True if this card's code is not the same as the other's code.
 """
 return isinstance(other, Card) and self.code != other.code

 def __str__(self):
 """
 Called by ``str(MyCard)``. Returns a string that when given to
 ``eval()`` will produce a tuple that can be unpacked and given to the
 Card constructor to replicate this card.

 This is used for saving the card as a string representation of a
 carddict for later usage.
 """
 return str(self.save())

 def __repr__(self):
 """
 Called by ``repr(MyCard)``. Returns the string '<Card:#>' where '#'
 is replaced with the code for the card instance.
 """
 return "<Card:{0}>".format(str(self.code))

 © Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

_static/up-pressed.png

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		librarian 0.3.0 documentation »

 All modules for which code is available

		librarian.card

		librarian.deck

		librarian.library

 © Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

library.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		librarian 0.2.7 documentation »

 		API »

library Module

The Library class, an sqlite database of cards.

		
class librarian.library.Library(dbname, cachelimit=100, cardclass=<class 'librarian.card.Card'>)

		Bases: object

Library wraps an sqlite3 database that stores serialized cards.

Library also allows load and save hooks that allow a list of function to be
called on each string as it is saved and loaded.

The Library constructor can take a cardclass argument which
defaults to librarian.card.Card and is used to construct a card object
when loading. A cardclass should be a subclass of
librarian.card.Card and be able to take the original carddict
constructor argument alone along with providing the original or equal
Card.load and Card.save methods.

		
cache_card(card)

		Cache the card for faster future lookups. Removes the oldest card
when the card cache stores more cards then this libraries cache limit.

		
cached(code)

		Return True if there is a card for the given code in the cache.

		
connection()

		Connect to the underlying database and return the connection.

		
create_db()

		Create the CARDS table in the sqlite3 database.

		
filter_search(code=None, name=None, abilities=None, attributes=None, info=None)

		Return a list of codes and names pertaining to cards that have the
given information values stored.

Can take a code integer, name string, abilities dict {phase: ability
list/”*”}, attributes list, info dict {key, value list/”*”}.

In the above argument examples “*” is a string that may be passed
instead of a list as the dict value to match anything that stores that
key.

		
load_card(code, cache=True)

		Load a card with the given code from the database. This calls each
save event hook on the save string before commiting it to the database.

Will cache each resulting card for faster future lookups with this
method while respecting the libraries cache limit. However only if the
cache argument is True.

Will return None if the card could not be loaded.

		
retrieve_all()

		A generator that iterates over each card in the library database.

This is best used in for loops as it will only load a card from the
library as needed rather then all at once.

		
save_card(card, cache=False)

		Save the given card to the database. This calls each save event hook
on the save string before commiting it to the database.

		
librarian.library.Where_filter_gen(*data)

		Generate an sqlite “LIKE” filter generator based on the given data.
This functions arguments should be a N length series of field and data
tuples.

 © Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_modules/librarian/library.html

 Navigation

 		
 index

 		
 modules |

 		librarian 0.3.0 documentation »

 		Module code »

 Source code for librarian.library

"""The Library class, an sqlite database of cards."""
__author__ = 'Taylor "Nekroze" Lawson'
__email__ = 'nekroze@eturnilnetwork.com'
import sqlite3
from .card import Card

FIELDS = ("code", "name", "abilities", "attributes", "info")

[docs]def Where_filter_gen(*data):
 """
 Generate an sqlite "LIKE" filter generator based on the given data.
 This functions arguments should be a N length series of field and data
 tuples.
 """
 where = []

 def Fwhere(field, pattern):
 """Add where filter for the given field with the given pattern."""
 where.append("WHERE {0} LIKE '{1}'".format(field, pattern))

 def Fstring(field, string):
 """Add a where filter based on a string."""
 Fwhere(field, "%{0}%".format(string if not isinstance(string, str)
 else str(string)))

 def Fdict(field, data):
 """Add where filters to search for dict keys and values."""
 for key, value in data.items():
 if value == '*':
 Fstring(field, key)
 else:
 Fstring(field, "{0}:%{1}".format(key, value if not
 isinstance(value, str)
 else str(value)))

 def Flist(field, data):
 """Add where filters to search for elements of a list."""
 for elem in data:
 Fstring(field, elem if not isinstance(elem, str) else
 str(elem))

 for field, data in data:
 if isinstance(data, str):
 Fstring(field, data)
 elif isinstance(data, dict):
 Fdict(field, data)
 elif isinstance(data, list):
 Flist(field, data)

 return ' AND '.join(where)

[docs]class Library(object):
 """
 Library wraps an sqlite3 database that stores serialized cards.

 Library also allows load and save hooks that allow a list of function to be
 called on each string as it is saved and loaded.

 The ``Library`` constructor can take a ``cardclass`` argument which
 defaults to ``librarian.card.Card`` and is used to construct a card object
 when loading. A ``cardclass`` should be a subclass of
 ``librarian.card.Card`` and be able to take the original ``carddict``
 constructor argument alone along with providing the original or equal
 ``Card.load`` and ``Card.save`` methods.
 """
 def __init__(self, dbname, cachelimit=100, cardclass=Card):
 self.dbname = dbname
 self.save_chain = []
 self.load_chain = []
 self.cachelimit = cachelimit
 self.card_cache = {}
 self.card_cache_list = []
 self.cardclass = cardclass

[docs] def cached(self, code):
 """Return True if there is a card for the given code in the cache."""
 return code in self.card_cache[code]

[docs] def cache_card(self, card):
 """
 Cache the card for faster future lookups. Removes the oldest card
 when the card cache stores more cards then this libraries cache limit.
 """
 code = card.code
 self.card_cache[code] = card
 if code in self.card_cache_list:
 self.card_cache_list.remove(code)
 self.card_cache_list.append(code)

 if len(self.card_cache_list) > self.cachelimit:
 del self.card_cache[self.card_cache_list.pop(0)]

[docs] def create_db(self):
 """Create the CARDS table in the sqlite3 database."""
 with sqlite3.connect(self.dbname) as carddb:
 carddb.execute("""CREATE TABLE IF NOT EXISTS CARDS(code STRING,
 name STRING, abilities STRING, attributes STRING, info STRING)""")

[docs] def load_card(self, code, cache=True):
 """
 Load a card with the given code from the database. This calls each
 save event hook on the save string before commiting it to the database.

 Will cache each resulting card for faster future lookups with this
 method while respecting the libraries cache limit. However only if the
 cache argument is True.

 Will return None if the card could not be loaded.
 """
 card = self.card_cache.get(code, None)
 if card is None:
 code = code if isinstance(code, str) else str(code)
 with sqlite3.connect(self.dbname) as carddb:
 result = carddb.execute(
 "SELECT * FROM CARDS WHERE code = ?", (code,))
 loadrow = result.fetchone()
 if not loadrow:
 return None
 loaddict = dict(zip(FIELDS, loadrow))
 card = self.cardclass(loaddict=loaddict)
 if cache:
 self.cache_card(card)
 return card

[docs] def save_card(self, card, cache=False):
 """
 Save the given card to the database. This calls each save event hook
 on the save string before commiting it to the database.
 """
 if cache:
 self.cache_card(card)
 carddict = card.save()
 with sqlite3.connect(self.dbname) as carddb:
 carddb.execute("DELETE from CARDS where code = ?",
 (carddict["code"],))
 carddb.execute("INSERT INTO CARDS VALUES(?, ?, ?, ?, ?)",
 [carddict[key] if isinstance(carddict[key], str)
 else str(carddict[key]) for key in FIELDS])

[docs] def retrieve_all(self):
 """
 A generator that iterates over each card in the library database.

 This is best used in for loops as it will only load a card from the
 library as needed rather then all at once.
 """
 with sqlite3.connect(self.dbname) as carddb:
 for row in carddb.execute("SELECT code FROM CARDS"):
 yield self.load_card(row[0])

[docs] def filter_search(self, code=None, name=None, abilities=None,
 attributes=None, info=None):
 """
 Return a list of codes and names pertaining to cards that have the
 given information values stored.

 Can take a code integer, name string, abilities dict {phase: ability
 list/"*"}, attributes list, info dict {key, value list/"*"}.

 In the above argument examples "*" is a string that may be passed
 instead of a list as the dict value to match anything that stores that
 key.
 """
 command = "SELECT code, name FROM CARDS "
 command += Where_filter_gen(("code", code), ("name", name),
 ("abilities", abilities),
 ("attributes", attributes),
 ("info", info))

 with sqlite3.connect(self.dbname) as carddb:
 return carddb.execute(command).fetchall()

[docs] def connection(self):
 """Connect to the underlying database and return the connection."""
 return sqlite3.connect(self.dbname)

 © Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

_static/plus.png

_static/down.png

card.html

 Navigation

 		
 index

 		
 modules |

 		
 previous |

 		librarian 0.2.7 documentation »

 		API »

card Module

Generic Card Class.

		
class librarian.card.Card(code=None, name=None, loaddict=None)

		Bases: object

		The card stores general information about the card.

		
		code: the unique identifier for this card.

		name: name of this card to be displayed.

		abilities: dict of phase ids containing a list of action descriptors.

		attributes: list of special details this card has.

		info: dict of any information you would like.

Card can be saved to, and loaded from, a string. Call str() on a Card
instance or .save_string() on the instance. This will return a string
that when evaluated using eval() can be unpacked into the Card
constructor re-create that card. For example.
original = Card(1, 'cool card')
savestring = str(card)
loaded = Card(*eval(savestring))
assert loaded == original

		
add_ability(phase, ability)

		Add the given ability to this Card under the given phase. Returns
the length of the abilities for the given phase after the addition.

		
add_attribute(attribute)

		Add the given attribute to this Card. Returns the length of
attributes after addition.

		
get_abilities(phase)

		Returns an ability list for the given phase ID.

		
get_info(key)

		Return a value in the info for this card with the given key.

		
has_attribute(attribute)

		Return true if this card contains the given attribute.

		
is_valid()

		Returns True if code is not 0 and self.name is not ‘’.

		
load(carddict)

		Takes a carddict as produced by Card.save and sets this card
instances information to the previously saved cards information.

		
save()

		Converts the Card as is into a dictionary capable of reconstructing the
card with Card.load or serialized to a string for storage.

		
set_info(key, value, append=True)

		Set any special info you wish to the given key. Each info is stored in
a list and will be appended to rather then overriden unless append is
False.

 © Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment.png

_static/ajax-loader.gif

_static/file.png

deck.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		librarian 0.2.7 documentation »

 		API »

deck Module

Generic Card Class.

		
class librarian.deck.Deck(library=None, cards=None)

		Bases: object

A collection of possibly recuring cards stored as codes.

		
contains_card(code)

		Returns true if the given code is currently stored in this deck.

		
contains_info(key, value)

		Returns how many cards in the deck have the specified value under the
specified key in their info data.

This method requires a library to be stored in the deck instance and
will return None if there is no library.

		
contians_attribute(attribute)

		Returns how many cards in the deck have the specified attribute.

This method requires a library to be stored in the deck instance and
will return None if there is no library.

		
get_card(index=-1, cache=True, remove=True)

		Retrieve a card any number of cards from the top. Returns a
Card object loaded from a library if one is specified otherwise
just it will simply return its code.

If index is not set then the top card will be retrieved.

If cache is set to True (the default) it will tell the library to cache
the returned card for faster look-ups in the future.

If remove is true then the card will be removed from the deck before
returning it.

		
move_top_cards(other, number=1)

		Move the top number of cards to the top of some other deck.

By default only one card will be moved if number is not specified.

		
remaining()

		Returns the number of remaining cards in the deck.

		
shuffle()

		Sort the cards in the deck into a random order..

		
top_cards(number=1, cache=True, remove=True)

		Retrieve the top number of cards as Librarian.Card objects in a
list in order of top to bottom most card. Uses the decks
.get_card and passes along the cache and remove arguments.

 © Copyright 2013, Taylor "Nekroze" Lawson.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/down-pressed.png

